Leap-In Transposase® & Transposon for Improved Protein Production

14th PEACe conference

Newport, Rhode Island September 23, 2019

Sowmya Balasubramanian, Ph.D.

ATUM Cell Line Development

ATUM

- Founded in 2003 as DNA2.0
- Organic growth, Employee owned
- ~100 employees

- >25 issued patents
- >50 peer-reviewed papers
- Services in >2,500 publications
 Санимания

Classic CLD workflow is slow, tedious, uncertain and labor intensive

The life of a transposon-transposase pair

- 4 billion years of successful evolutionary history
- Cut-paste mechanism
- Single copy integration at each site
- Perfect integration of elements between ITR's

Transposase applied to stable cell line development

- Transient exposure to transposase = Stable insertion
- Single copy integrations at each site
- Multiple insertions (5 60) across the genome
- Structural integrity maintained
- No size limitation

Consistent, uniform presentation of Leap-In® transgenes

Intact constructs maintained at every integration site

ÊATUM

VectorGPS[®] on Leap-In[®] transposon

- Multiple transcriptional units/construct
- Catalog of selectable markers
- Catalog of promoters
- Catalog of insulators
- Other regulatory elements
 - Signal peptides,
 - mRNA transport sequences,

• IRES etc.

Controlling ratios with construct design – 2 ORFs

Controlling ratios with construct design – 3 ORFs

Construct number

Leap-In[®] generates high expressing homogeneous pools

Intracellular Staining of stable pools

Clone-like distribution of cell pool

15x higher mean fluorescence

ÊATUM

Balasubramanian, S, et. al., 2018, Biotechnol. J

Leap-In[®] + VectorGPS[®] = Drug free selection

- Use vector elements to modulate stringency of selection
- Drug free selection = absence of Glutamine
- Recovery in <2 weeks
- Low impact of selection dip on pool titers

Productivity in Leap-In[®] generated stable pools

Protein	Volumetric productivity	Specific productivity
lgG1	4.2 g/L	42 pcd
lgG1	4.0 g/L	44 pcd
lgG1	4.3 g/L	22 pcd
lgG1	5.9 g/L	39 pcd
lgG1	4.2 g/L	33 pcd
lgG4	5.0 g/L	43 pcd
lgG4	5.0 g/L	49 pcd

Pool Titers

Population shift towards high producing clones

Leap-In Transposase®

R

anc	lom	Integration

lf you sample	% chance to find
1	0.1%
100	10%
500	39%
1000	63%
2500	92%
5000	99%

https://www.berkeleylights.com/

- High producers rare
- 62% of clones in top quartile of expressers
- 82% of clones in top half of expressers
- 99% probability in under 200 clones

Leap-In[®] + VIPS[™] = reduced clone ranking effort

EATUM

Robust expression and copy number stability

Consistent genetic stability over >60 population doublings

Genetic Stability Statistics

Genetic stability is not a clone ranking parameter

Structural stability of the integrated expression constructs

Perfect nucleotide level stability over 90 generations

EATUM

Case Study: Hard to express non-CHO

Pool titers are predictive of clone titers

Case study: Intensified fed-batch

Case study: Stable pools predict derivative clone titers

₽ATUM

Classic CLD workflow

Classic CLD workflow is slow, tedious, uncertain and labor intensive

Leap-In CLD workflow - Transfection to RCB in 12 weeks

Summary of the Leap-In Transposase® Platform

Rapid Timelines

- Efficient and robust integration = Predictable selection
- From transfection to RCB in ~12 weeks
- Predictive stable pools

High Titer

- Leveraging > decade of ATUM proprietary vector elements and algorithms
- Highly uniform cell pools up to 5⁺g/L and clones in excess of 14g/L

Robust Stability

- Transposase mechanism provides very high genetic stability
- No loss in productivity or transgene copy numbers after 60+ doublings

Enabling for Next Generation Biologics

- Compatible with very large inserts (e.g. >100kb)
- Able to co-express multiple genes and tune ratios
- Multiple transposases enable unique genetic engineering strategies

Cell engineering using Leap-In®

Improving product quality through cell engineering

ÊATUM

Cell Pools for speeding timeline

Cell pools – Risks	Cell pools – Advantages	
Low titer	Shorter timelines	
Expression stability	Reduced cost	
Pool product quality ≠ Clone product quality	Cell Line Development off critical path	

Cell pool – Requirements

Clone like expression titer

Expression stability

Comparable product quality to derivative clones

ÊATUM

Leap-In[®] pools: High productivity

Pool Titers

Protein	Volumetric productivity	Specific productivity
lgG1	4.2 g/L	42 pcd
lgG1	4.0 g/L	44 pcd
lgG1	4.3 g/L	22 pcd
lgG1	5.9 g/L	39 pcd
lgG1	4.2 g/L	33 pcd
lgG4	5.0 g/L	43 pcd
lgG4	5.0 g/L	49 pcd

Leap-In[®] pools: Predict derivative clone titers

Pool titers predictive of clone titers

Leap-In[®] pools: Stable expression

Leap-In[®] pools: Predict derivative clones product quality

Comparable product quality of pools and clones

Leap-In[®] pools: : Product quality stability

Consistent product quality of stable pools

EATUM

Cell Pools speeding timeline to IND

Cell pools – Risks	Cell pools – Advantages
Low titer	Shorter timelines
Expression stability	Reduced cost
Pool product quality ≠ Clone product quality	Cell Line Development off critical path

Cell pools – Requirements

- ✓ Clone like expression titer
- ✓ Expression stability
- \checkmark Comparable product quality to derivative clones

Leap-In[®] pool ranking more critical than clone ranking

Applications for cell pools

- Screen vector constructs
- Screen sequence variants
- Process development
 - Media optimizations
 - Cell engineering
- Purification method development
- Analytical and formulation development
- Generating material for IND enabling tox
- Generating Ph. I lot

Ongoing leap-In platform innovations

- The Leap-In Transposase family is expanding
- Engineered CHO host cell lines
- Optimization of alternative host cell lines
- Cell and gene therapy modalities

атим Thank You

Sowmya Balasubramanian sbalasubramanian@atum.bio

CLD Partners

Solentim VIPS[™] clonality verification

Horizon Discovery GS null CHO K1 cell line

> Technology presented is protected by issued US patents 10287590, 10253321, 10233454, 10041077, 9771402, 9580697, 9574209, 9534234, 9493521, 9428767, 9290552, 9206433, 9102944, 8975042, 8825411, 8635029, 8412461, 8401798, 8323930, 8158391, 8126653, 8005620, 7805252, 7561973, 7561972 and pending applications

